Online Algorithms for Adaptive Optimization in Heterogeneous Delay Tolerant Networks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Algorithms for Adaptive Optimization in Heterogeneous Delay Tolerant Networks

Delay Tolerant Networks (DTNs) are an emerging type of networks which do not need a predefined infrastructure. In fact, data forwarding in DTNs relies on the contacts among nodes which may possess different features, radio range, battery consumption and radio interfaces. On the other hand, efficient message delivery under limited resources, e.g., battery or storage, requires to optimize forward...

متن کامل

Energy-Aware Probabilistic Epidemic Forwarding Method in Heterogeneous Delay Tolerant Networks

Due to the increasing use of wireless communications, infrastructure-less networks such as Delay Tolerant Networks (DTNs) should be highly considered. DTN is most suitable where there is an intermittent connection between communicating nodes such as wireless mobile ad hoc network nodes. In general, a message sending node in DTN copies the message and transmits it to nodes which it encounters. A...

متن کامل

Delay-Tolerant Online Convex Optimization: Unified Analysis and Adaptive-Gradient Algorithms

We present a unified, black-box-style method for developing and analyzing online convex optimization (OCO) algorithms for full-information online learning in delayed-feedback environments. Our new, simplified analysis enables us to substantially improve upon previous work and to solve a number of open problems from the literature. Specifically, we develop and analyze asynchronous AdaGrad-style ...

متن کامل

Adaptive Algorithms for Online Optimization

We study the notion of learning in an oblivious changing environment. Existing online learning algorithms which minimize regret are shown to converge to the average of all locally optimal solutions. We propose a new performance metric, strengthening the standard metric of regret, to capture convergence to locally optimal solutions. We then describe a series of reductions which transform algorit...

متن کامل

Delay-Tolerant Algorithms for Asynchronous Distributed Online Learning

We analyze new online gradient descent algorithms for distributed systems with large delays between gradient computations and the corresponding updates. Using insights from adaptive gradient methods, we develop algorithms that adapt not only to the sequence of gradients, but also to the precise update delays that occur. We first give an impractical algorithm that achieves a regret bound that pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ICST Transactions on Mobile Communications and Applications

سال: 2013

ISSN: 2032-9504

DOI: 10.4108/mca.1.3.e5